

#### Advanced Geotechnical Methods in Exploration

#### **Enhancing Site Characterization**



Krystle Pelham Engineering Geologist NH Dept. of Transportation Bureau of Materials and Research



### **New Hampshire DOT**

#### **Geotechnical Engineering Section Perspective**







### NHDOT Geotechnical Section Function

- Subsurface Investigation
- Lab testing
- Geotechnical Design/Analysis
- Geotechnical Data Reports and Design recommendations
- Construction Assistance/Verification
- Standards and Specification
- Performance Monitoring
- Geotechnology and <u>Innovation Implementation</u>



#### **Geotechnical Section Involvement**

- Scoping
- Pre-Design
- Final-Design
- Pre-Bid
- Pre-Construction
- Construction
- Post-Construction
- In Service
- Forensic/Litigation









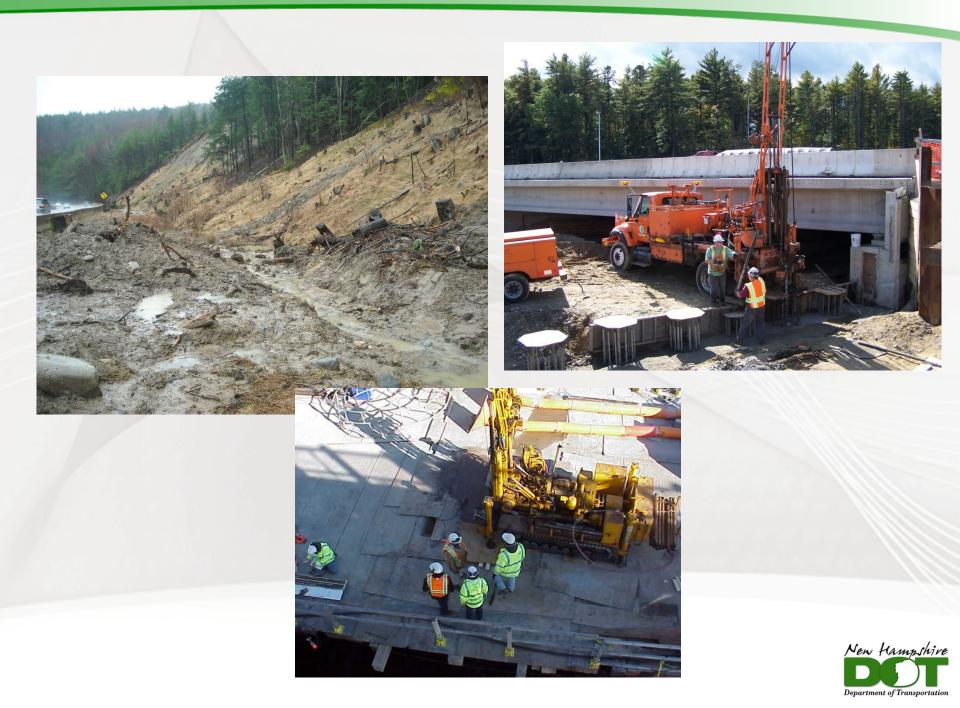


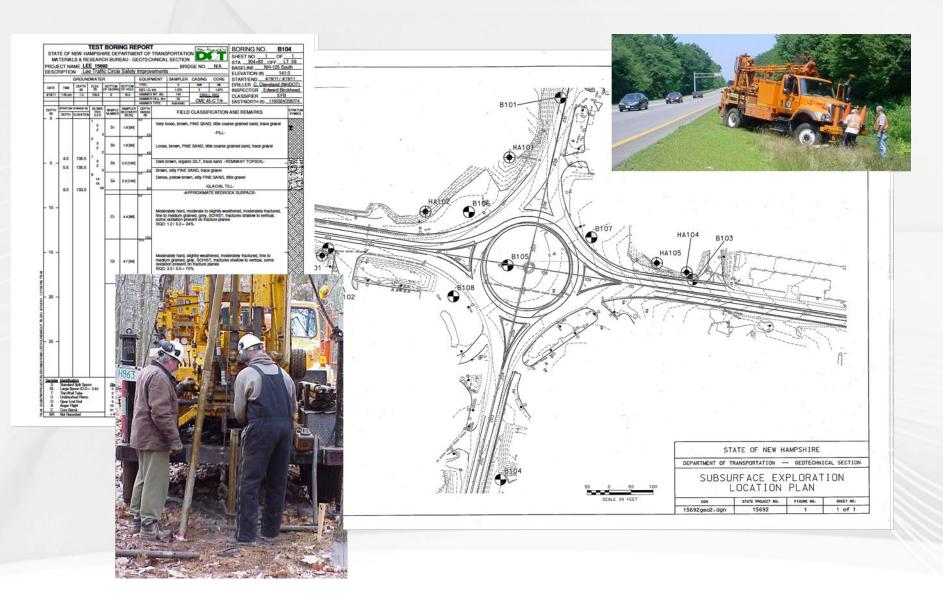
#### **Goals:**

Why enhance site characterization – Adding project Value

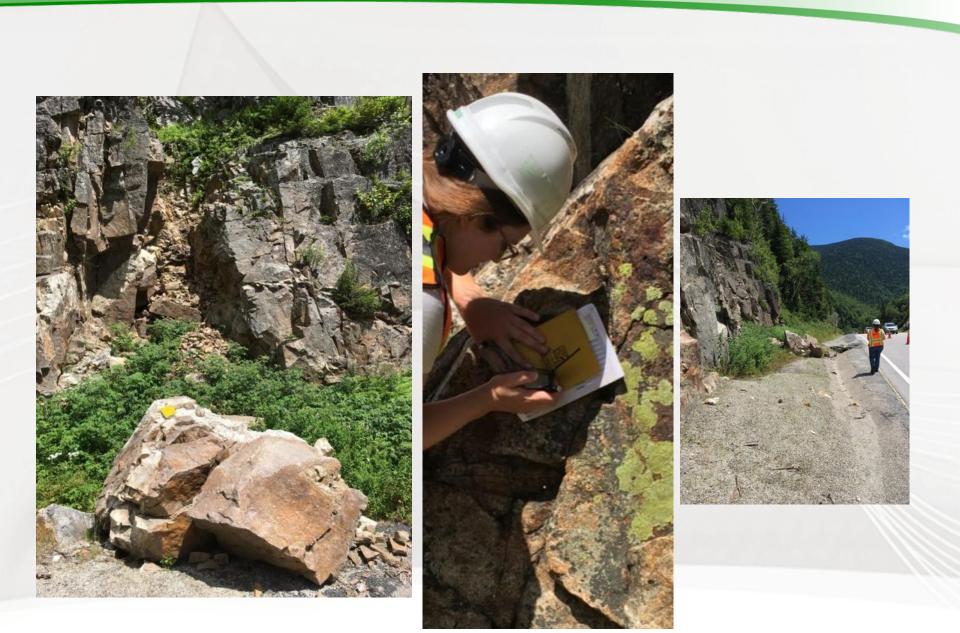
- Improve site subsurface characterization
- Acquire better soil and rock properties
- Better information on foundations
- Less environmental impact non invasive
- Safer more economical impact
- More accurate bids for construction
- Fewer claims, change orders, cost overruns







#### Conventional....

| OROLNOVATER         EQUIPMENT         SAMPLER         CASING         OTHER         22/21/2 (22/12)           ave         Tria         STARTINO         22/21/2 (22/12)         NUBLE (IMS)           ave         Tria         Status         Status         Status         Status         Status         NUBLE (IMS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |      |               | WIPS         |                     | 4465               |              |                                  | SECTION                                                         | DGE NO.                                         | 157/093                               | SHEET NOOF,<br>STAOFF<br>BASELINE<br>ELEVATION (ft)92             | 1.0    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|---------------|--------------|---------------------|--------------------|--------------|----------------------------------|-----------------------------------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------|
| BATE     TWS     UNIDERCTOR     Sector of Field       BATE     TWS     UNIDERCTOR     Joshua Szmyt       BATE     Statistics     Statistics     Statistics     Statistics       BATE     Statistics     Statistics     Statistics     Statistics     Statistics       Statistics     Statistics     Statistics     Statistics     Statistics       Statistics <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>MENT</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |               |              |                     |                    |              | MENT                             |                                                                 |                                                 |                                       |                                                                   |        |
| Image: constraint of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE         | TIME | CEPTH<br>(71) | ELEV.<br>(%) | BOTTOM<br>OF CASING | OF HOLE            | SIZE I.D.    |                                  | 1.275                                                           | 5                                               | 1.875                                 |                                                                   |        |
| Deprint<br>Interview     Excursion<br>(I)     Excursion<br>(I) <thexcursion<br>(I)     <thex< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>HANNES</td><td>R FALL (In):</td><td></td><td></td><td></td><td>CLASSIFIER Joshua 3</td><td>Szmyt</td></thex<></thexcursion<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |               |              |                     |                    | HANNES       | R FALL (In):                     |                                                                 |                                                 |                                       | CLASSIFIER Joshua 3                                               | Szmyt  |
| Control     Server Serverol     Serverol <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>HANNE</td><td>R TYPE:</td><td>Sefety</td><td>10</td><td>VAIV</td><td>EAST/NORTH (ft)940867</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |      |               |              | -                   |                    | HANNE        | R TYPE:                          | Sefety                                                          | 10                                              | VAIV                                  | EAST/NORTH (ft)940867                                             |        |
| 0       0.7       920.3       120<br>22<br>1       8-1       0.8 (47)       120<br>22<br>1       120<br>1       120<br>1 <t< td=""><td>DEPTH<br/>(%)</td><td></td><td></td><td>PER</td><td>SAMPLE<br/>NUMBER</td><td>RECOVER<br/>(R) (%)</td><td>PANGE<br/>(1)</td><td></td><td>FIELD</td><td>CLASSI</td><td>FICATION</td><td>AND REMARKS</td><td>SYMBOL</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DEPTH<br>(%) |      |               | PER          | SAMPLE<br>NUMBER    | RECOVER<br>(R) (%) | PANGE<br>(1) |                                  | FIELD                                                           | CLASSI                                          | FICATION                              | AND REMARKS                                                       | SYMBOL |
| <ul> <li>- 5 - 5 - 10 - 13.5</li> <li>907.5</li> <li>1000.3</li> <li>- 10 - 15 - 15 - 15 - 15 - 15 - 15 - 15</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0 -        | 0.7  | 920.3         | 66           | 8-1                 |                    | 0.0          | Grave                            | I, trace Slit.                                                  |                                                 |                                       |                                                                   |        |
| <ul> <li>s - s - s - 10 - 13.5 907.5</li> <li>100.03 - 2 0 6 [20] - 4 (20) 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 100.03 - 1</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |               |              |                     |                    | 2.0          | Bottor<br>little G               | n 2 inches:<br>Gravel, trace                                    | Very dense<br>Silt.                             | -FILL-<br>e, light brow               | n, FINE to MEDIUM SAND,                                           | H.A    |
| - 10 -<br>13.5 907.5 1000.3 = -3 0.5 (52) 5 <sup>2</sup> +<br>15.5 907.5 1000.3 = -3 0.5 (52) 5 <sup>2</sup> +<br>- 15 -<br>- 15 -<br>- 15 -<br>- 10 -<br>- 15 -<br>- 20 - |              |      |               | 7            | 8-2                 | 0.6 (30)           | 30           | Mediu                            | ım dense, ilgi                                                  | ht brown, a                                     | ility FINE S                          | AND, little Gravel.                                               |        |
| <ul> <li>10 - 10 - 13.5 907.5</li> <li>100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 - 100.3 = -3 0.5 (52) 85 -</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 5 -        |      |               | 6            |                     |                    |              |                                  |                                                                 |                                                 |                                       |                                                                   | HA I   |
| <ul> <li>10 -</li> <li>13.6 907.6</li> <li>1000.3</li> <li>1000.4</li> <li>1000.4</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |               |              |                     |                    |              |                                  |                                                                 | -                                               | GLACIAL T                             | ILL-                                                              |        |
| 13.5     907.5     1000.3     8.4     A 3 123     Very dense, light brown, sity FINE SAND, some Gravel (rook in tip).       - 15     -     -     -     -     -       - 15     -     -     -     -     -       - 15     -     -     -     -     -       - 16     -     -     -     -     -       - 16     -     -     -     -     -       - 16     -     -     -     -     -       - 16     -     -     -     -     -       - 17     -     -     -     -     -       - 16     -     -     -     -     -       - 16     -     -     -     -     -       - 17     -     -     -     -     -       - 16     -     -     -     -     -       - 17     -     -     -     -     -       - 16     -     -     -     -     -       - 16     -     -     -     -     -       - 17     -     -     -     -     -       - 17     -     -     -     -     -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |               |              | 8-3                 | 0.5 [62]           | 80<br>84     | Very                             | dense, light b                                                  | rown, silty                                     | FINE SAND                             | D, little Gravel.                                                 | HX-    |
| 13.5 907.5 Advanced roller bit to 14.5 feet below ground surface and began corrig<br>15.6 - 15 -<br>15 -<br>15 -<br>20 - 20 - 20 - 20 -<br>20 - 20 - 20 - 20 - 20 - 20 - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 10 -       |      |               |              |                     |                    |              |                                  |                                                                 |                                                 |                                       |                                                                   | 111    |
| 13.5 907.5 Advanced roller bit to 14.5 feet below ground surface and began corrig<br>15.6 - 15 -<br>15 -<br>15 -<br>20 - 20 - 20 - 20 -<br>20 - 20 - 20 - 20 - 20 - 20 - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |      |               |              |                     |                    |              |                                  |                                                                 |                                                 |                                       |                                                                   | 05-    |
| 15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -     15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 13.5 | 907.5         | 100/0.3      | 8-4                 | 0 1 [33]           | 12.0 12.2    | 1                                | -A5                                                             | PROXIMA                                         | ATE BEDRO                             | DCK SURFACE-                                                      | 17-1   |
| - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 15 -       |      |               |              |                     |                    | 14.3         | Advar<br>rock.                   | nced roller bit                                                 | to 14.5 fe                                      | et below gri                          | ound surface and began coring                                     | -      |
| - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |               |              | 0-1                 | 4.8 (96)           |              | Hard,<br>graine<br>close,<br>RQD | slightly weat<br>ed, GNEISS v<br>rough, plana<br>2.6 / 5.0 = 52 | hered, mor<br>vith biotite<br>ar, discolor<br>% | derately fra<br>schist layer<br>ed.   | ctured, gray with white, fine<br>is, fractures low angle, very    |        |
| 102     4.8 (BI)         Very hard, sightly weathered, sightly fractured, gray and while, method by the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly compared to the profit layers, fractures iow angle, close, upper sightly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 20 -       |      |               |              | <u> </u>            |                    | 19.5         |                                  |                                                                 |                                                 |                                       |                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |               |              | 0-2                 | 4.8 [96]           |              | Very I<br>graine<br>rough        | hard, slightly<br>ed, GNEISS v                                  | weathered<br>vith blotite<br>olored, op         | , slightly fra<br>schist layer<br>en. | ctured, gray and white, medium<br>rs, fractures low angle, close, |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |      |               |              |                     |                    |              |                                  |                                                                 |                                                 |                                       |                                                                   |        |





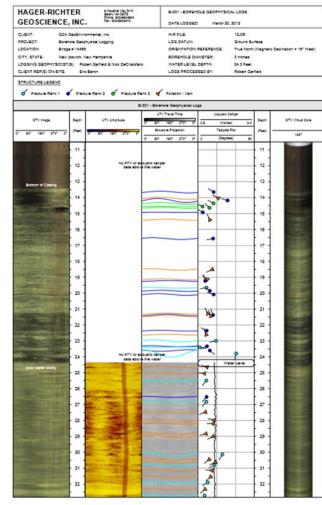








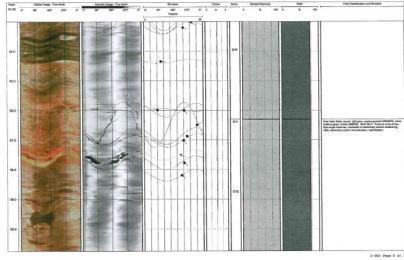




### Then there is the A-GaME...

Highway issues where alternative methods of investigation can help...

- Depth and rippability of bedrock
- Presence and location of objects
- Nature of shallow geologic layers peat, sand, clay
- Depth of bridge foundations
- Rock slope stability analysis





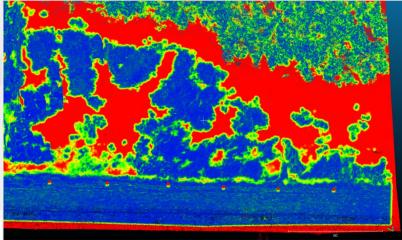





Acoustic/optical Televiewers

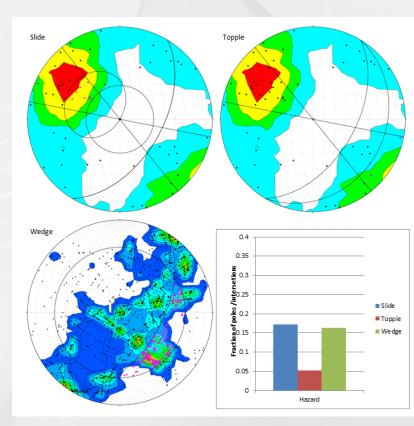








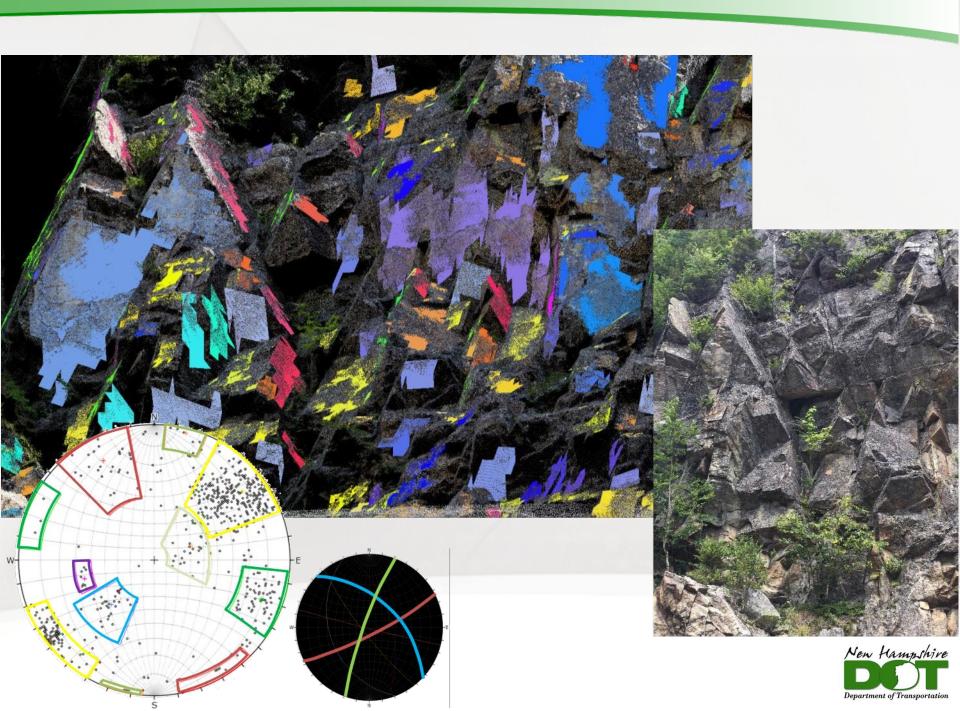


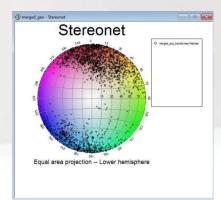





















Department of Transportation

# Enhanced, Effective, Site Characterization

better defining site variability

- Many methods available for using geophysics
- Not limited to the 5 Featured "most universal" technologies
- Minimally invasive
- Economical
- Excellent screening tool
- Proven results
- Applicability/Availability
- Minimizes the unknowns in construction claims, change orders, overruns



### Questions?

